Hidden worlds within flowers

Curr Biol. 2023 Jun 5;33(11):R506-R512. doi: 10.1016/j.cub.2023.04.054.

Abstract

There is a growing realization that ecological interactions take place at many scales, from acorns to forests, and that formerly overlooked community members, particularly microbes, can play outsized ecological roles. Beyond their primary function as the reproductive organs of angiosperms, flowers constitute resource-rich, ephemeral habitats teeming with flower-loving symbionts, or 'anthophiles'. The physical, chemical, and structural properties of flowers combine to create a habitat filter, selectively determining which anthophiles can reside there, and how, and when they interact. The microhabitats within flowers can provide shelter from predators or inclement weather, places to eat, sleep, thermoregulate, hunt, mate or reproduce. In turn, floral microhabitats contain the full range of mutualists, antagonists and apparent commensals, whose complex interactions impact how flowers look and smell, how profitable they are to foraging pollinators, and how selection feeds back upon the traits shaping those interactions. Recent studies suggest coevolutionary paths by which floral symbionts might be co-opted as mutualists and provide compelling examples in which ambush predators or florivores are recruited as floral allies. Unbiased studies that include the full roster of floral symbionts are likely to reveal novel links and additional nuance in the rich ecological communities hidden within flowers.

MeSH terms

  • Ecosystem
  • Flowers / physiology
  • Forests
  • Magnoliopsida*
  • Pollination* / physiology