Roles of Dihydrolipoamide Dehydrogenase in Health and Disease

Antioxid Redox Signal. 2023 Oct;39(10-12):794-806. doi: 10.1089/ars.2022.0181. Epub 2023 Aug 14.

Abstract

Significance: Dihydrolipoamide dehydrogenase (DLDH) is a flavin-dependent disulfide oxidoreductase. The active form of DLDH is a stable homodimer, and its deficiencies have been linked to numerous metabolic disorders. A better understanding of redox and nonredox features of DLDH may reveal druggable targets for disease interventions or preventions. Recent Advances: In this article, the authors review the different roles of DLDH in selected pathological conditions, including its deficiency in humans, its role in stroke and neuroprotection, skin photoaging, Alzheimer's disease, and DLDH as a nondehydrogenating protein, and construction of genetically modified DLDH animal models for further studying the role of DLDH in specific pathological conditions. DLDH is also vulnerable to oxidative modifications in pathological conditions. Critical Issues: Novel animal models need to be constructed using gene knockdown techniques to investigate the redox- and nonredox roles of DLDH in related metabolic diseases. Specific small-molecule DLDH inhibitors need to be discovered. The relationship between modifications of specific amino acid residues in DLDH and given pathological conditions is an interesting area that remains to be comprehensively evaluated. Future Directions: Cell-specific or tissue-specific knockdown of DLDH creating specific pathological conditions will provide more insights into the mechanisms, whereby DLDH may have therapeutic values under a variety of pathological conditions. Antioxid. Redox Signal. 39, 794-806.

Keywords: BN-PAGE; dihydrolipoamide dehydrogenase; metabolic disease; mitochondria; oxidative stress; redox.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dihydrolipoamide Dehydrogenase* / chemistry
  • Dihydrolipoamide Dehydrogenase* / genetics
  • Dihydrolipoamide Dehydrogenase* / metabolism
  • Humans
  • Oxidation-Reduction
  • Stroke*

Substances

  • Dihydrolipoamide Dehydrogenase