Error accumulation when steering toward curves

J Exp Psychol Hum Percept Perform. 2023 Jun;49(6):821-834. doi: 10.1037/xhp0001101.

Abstract

To steer a vehicle, humans must process incoming signals that provide information about their movement through the world. These signals are used to inform motor control responses that are appropriately timed and of the correct magnitude. However, the perceptual mechanisms determining how drivers process visual information remain unclear. Previous research has demonstrated that when steering toward a straight road-line, drivers accumulate perceptual evidence (error) over time to initiate steering action (Accumulator framework), rather than waiting for perceptual evidence to surpass time-independent fixed thresholds (Threshold framework). The more general case of steering around bends (with a requirement that the trajectory is adjusted to match the road curvature ahead) provides richer continuously varying information. The current experiment aims to establish whether the Accumulator framework provides a good description of human responses when steering toward curved road-lines. Using a computer-generated steering correction paradigm, drivers (N = 11) steered toward intermittently appearing curved road-lines that varied in position and radius with respect to the driver's trajectory. The Threshold framework predicted that steering responses would be of fixed magnitude and at fixed absolute errors across conditions regardless of the rate of error development. Conversely, the Accumulator framework predicted that drivers should respond to larger absolute errors when the error signal developed at a faster rate. Results were consistent with an Accumulator framework in a manner that supports previous investigations and the computational modeling literature. We propose that the accumulation of perceptual evidence captures human behavior in a variety of steering contexts that drivers face in the real world. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

MeSH terms

  • Automobile Driving*
  • Computer Simulation
  • Humans
  • Movement
  • Psychomotor Performance* / physiology

Grants and funding