Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2

J Hazard Mater. 2023 Sep 5:457:131558. doi: 10.1016/j.jhazmat.2023.131558. Epub 2023 May 2.

Abstract

The development of bifunctional signal probes based on a single component is highly desirable for sensitive and simple dual-mode detection of Pb2+. Here, novel gold nanocluster-confined covalent organic frameworks (AuNCs@COFs) were fabricated as a bisignal generator to enable electrochemiluminescence (ECL) and colorimetric dual-response sensing. AuNCs with both intrinsic ECL and peroxidase-like activity were confined into the ultrasmall pores of the COFs via an in situ growth method. On the one hand, the space-confinement effect of the COFs closed the ligand motion-induced nonradiative transition channels of the AuNCs. As a result, the AuNCs@COFs exhibited a 3.3-fold enhancement in anodic ECL efficiency compared to the solid-state aggregated AuNCs using triethylamine as the coreactant. On the other hand, due to the outstanding spatial dispersibility of the AuNCs in the structurally ordered COFs, a high density of active catalytic sites and accelerated electron transfer were obtained, leading to the promotion of the enzyme-like catalytic capacity of the composite. To validate its practical applicability, a Pb2+-triggered dual-response sensing system was proposed based on the aptamer-regulated ECL and peroxidase-like activity of the AuNCs@COFs. Sensitive determinations down to 7.9 pM for the ECL mode and 0.56 nM for the colorimetric mode were obtained. This work provides an approach for designing single element-based bifunctional signal probes for dual-mode detection of Pb2+.

Keywords: Colorimetric; Covalent organic frameworks; Electrochemiluminescence; Gold nanoclusters; Pb(2+).