Dental pulp stem cell-derived exosomes revitalize salivary gland epithelial cell function in NOD mice via the GPER-mediated cAMP/PKA/CREB signaling pathway

J Transl Med. 2023 Jun 3;21(1):361. doi: 10.1186/s12967-023-04198-0.

Abstract

Background: Restoration of salivary gland function in Sjogren's syndrome (SS) is still a challenge. Dental pulp stem cells (DPSCs) derived exosomes had shown anti-inflammatory, anti-oxidative, immunomodulatory, and tissue function restorative abilities. However, the salivary gland function restoration potential of DPSCs-derived exosomes (DPSC-Exos) during SS has not been investigated yet.

Methods: DPSC-Exos was isolated by ultracentrifugation methods and characterized. Salivary gland epithelial cells (SGEC) were treated with interferon-gamma (IFN-γ) to mimic SS in vitro and cultured with or without DPSC-Exos. SGEC survival and aquaporin 5 (AQP5) expression were analyzed. mRNA sequencing and bioinformatics analysis were performed in IFN-γ vs. DPSC-Exos+ IFN-γ treated SGEC. Non-obese diabetic (NOD)/ltj female mice (SS model), were intravenously administered with DPSC-Exos, and salivary gland functions and SS pathogenicity were analyzed. Furthermore, the mRNA sequencing and bioinformatics predicted mechanism of the therapeutic effect of DPSC-Exos was further investigated both in vitro and in vivo using RT-qPCR, Western blot, immunohistochemistry, immunofluorescence, flowcytometry analysis.

Results: DPSC-Exos partially rescued IFN-γ triggered SGEC death. IFN-γ inhibited AQP5 expression in SGEC and DPSC-Exos reversed this effect. Transcriptome analysis showed GPER was the upregulated DEG in DPSC-Exos-treated SGEC with a positive correlation with salivary secretion-related DEGs. Pathway enrichment analysis revealed that DEGs were mainly attributed to estrogen 16 alpha-hydroxylase activity, extracellular exosome function, cAMP signaling, salivary secretion, and estrogen signaling. Intravenous injection of DPSC-Exos in NOD/ltj mice alleviated the SS syndrome as indicated by the increased salivary flow rate, attenuated glandular inflammation, and increased AQP5 expression. GPER was also upregulated in the salivary gland of DPSC-Exos-treated NOD/ltj mice compared with the PBS-treated NOD/ltj mice. IFN-γ+DPSC-Exos-treated SGEC showed higher expression of AQP5, p-PKA, cAMP, and intracellular Ca2+ levels compared with IFN-γ-treated SGEC. These effects were reversed by the inhibition of GPER.

Conclusions: Our results showed that DPSC-Exos revitalize salivary gland epithelial cell function during SS via the GPER-mediated cAMP/PKA/CREB pathway suggesting the possible therapeutic potential of DPSC-Exos in SS-treatment.

Keywords: Aquaporin 5 (AQP5); Dental pulp stem cells (DPSC); Exosomes; G-protein coupled estrogen receptor (GPER); Salivary gland epithelial cells (SGEC); Sjogren’s syndrome (SS).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Dental Pulp* / cytology
  • Epithelial Cells / metabolism
  • Exosomes* / metabolism
  • Female
  • Humans
  • Interferon-gamma / pharmacology
  • Mice
  • Mice, Inbred NOD
  • Salivary Glands* / cytology
  • Sjogren's Syndrome* / therapy

Substances

  • Interferon-gamma
  • GPER1 protein, mouse
  • Aqp5 protein, mouse