Catalytic degradation of carbamazepine by surface-modified zerovalent copper via the activation of peroxymonosulphate: mechanism, degradation pathways and ecotoxicity

Environ Technol. 2023 Jun 13:1-14. doi: 10.1080/09593330.2023.2220889. Online ahead of print.

Abstract

In this research work, surface-modified nano zerovalent copper (nZVC) was prepared using a simple borohydride reduction method. The spectroscopic and crystallographic results revealed the successful synthesis of surface-modified nano zerovalent copper (nZVC) using solvents such as ethanol (ETOH), ethylene glycol (EG) and tween80 (T80). The as-synthesized material was fully characterized for morphological surface and crystal structural properties. The results indicated that EG provides an excellent synthesis environment to nZVC compared to ETOH and T80 in terms of good dispersion, high surface area and excellent catalytic properties. The catalytic efficiency of nZVC/EG was investigated alone and with peroxymonosulphate (PMS) in the absence of light. The degradation results demonstrated that the involvement of PMS synergistically boosted the catalytic efficiency of synthesized nZVC/EG material. Furthermore, the degradation products (DPs) of CBZ were determined by GC-MS and subsequently, the degradation pathways were proposed. The ecotoxicity analysis of the DPs was also explored. The proposed (nZVC/EG/PMS) system is economical and efficient and thus could be applied for the degradation of CBZ from an aquatic system after altering the degradation pathways in such a way that results in harmless products.

Keywords: Ethylene glycol; PMS; carbamazepine; degradation; nano-zerovalent copper.