An ultrasensitive isoprene gas sensor based on the In2O3/MoS2 nanocomposite prepared by hydrothermal synthesis

RSC Adv. 2023 May 25;13(23):15826-15832. doi: 10.1039/d3ra00608e. eCollection 2023 May 22.

Abstract

Isoprene is one of the specific biomarkers of liver disease in human exhaled gas, which should be detected with a high response at an order of ppb in actual application. In this paper, the heterojunction between n-type In2O3 and MoS2 was proposed to improve the isoprene sensing properties. Both In2O3 and MoS2 were prepared by a hydrothermal method, and nanostructured In2O3 flowers and solid micro irregular MoS2 particles were mixed into the In2O3/MoS2 composite with a mol ratio of 6 : 4. The composite was characterized by EDS and XRD to confirm the element types and crystal types. The isoprene sensor was prepared by dipping the composite suspension on a ceramic substrate integrated with a sensing electrode and heating unit. The testing results of the sensor showed the highest response value of 1.8 to 100 ppb isoprene at 200 °C. Besides, the low detecting limit (less than 5 ppb isoprene) and excellent selectivity are also revealed, showing that the composite can be a good candidate sensing material for isoprene for application in breath analysis.