Helicity-Preserving Optical Metafluids

Nano Lett. 2023 Jun 14;23(11):5101-5107. doi: 10.1021/acs.nanolett.3c01026. Epub 2023 May 29.

Abstract

A colloidal suspension of photonic nanostructures exhibiting optical magnetism is dubbed an optical metafluid. A promising constituent of a metafluid is a nanosphere of high-refractive index dielectrics having the magnetic-type Mie resonances in the optical frequency. At the Kerker conditions, a dielectric nanosphere satisfies the electromagnetic duality symmetry condition and preserves the handedness of circularly polarized incident light. A metafluid of such dielectric nanospheres thus preserves the helicity of incident light. In the helicity-preserving metafluid, the local chiral fields around the constituent nanospheres are strongly enhanced, which improves the sensitivity of enantiomer-selective chiral molecular sensing. Here, we experimentally demonstrate that a solution of crystalline silicon nanospheres can be "dual" and "anti-dual" metafluids. We first theoretically address the electromagnetic duality symmetry of single silicon nanospheres. We then produce solutions of silicon nanospheres with narrow size distributions and experimentally demonstrate the "dual" and "anti-dual" behaviors.

Keywords: Mie resonance; metamaterials; nanophotonics; optical helicity.