Lipid Emulsion to Treat Acute Poisonings: Mechanisms of Action, Indications, and Controversies

Pharmaceutics. 2023 May 3;15(5):1396. doi: 10.3390/pharmaceutics15051396.

Abstract

Biodetoxification using intravenous lipid emulsion (ILE) in acute poisoning is of growing interest. As well as for local anesthetics, ILE is currently used to reverse toxicity caused by a broad-spectrum of lipophilic drugs. Both pharmacokinetic and pharmacodynamic mechanisms have been postulated to explain its possible benefits, mainly combining a scavenging effect called "lipid sink" and cardiotonic activity. Additional mechanisms based on ILE-attributed vasoactive and cytoprotective properties are still under investigation. Here, we present a narrative review on lipid resuscitation, focusing on the recent literature with advances in understanding ILE-attributed mechanisms of action and evaluating the evidence supporting ILE administration that enabled the international recommendations. Many practical aspects are still controversial, including the optimal dose, the optimal administration timing, and the optimal duration of infusion for clinical efficacy, as well as the threshold dose for adverse effects. Present evidence supports the use of ILE as first-line therapy to reverse local anesthetic-related systemic toxicity and as adjunct therapy in lipophilic non-local anesthetic drug overdoses refractory to well-established antidotes and supportive care. However, the level of evidence is low to very low, as for most other commonly used antidotes. Our review presents the internationally accepted recommendations according to the clinical poisoning scenario and provides the precautions of use to optimize the expected efficacy of ILE and limit the inconveniences of its futile administration. Based on their absorptive properties, the next generation of scavenging agents is additionally presented. Although emerging research shows great potential, several challenges need to be overcome before parenteral detoxifying agents could be considered as an established treatment for severe poisonings.

Keywords: Intralipid®; cardiac arrest; cardiotoxicant; cardiovascular failure; detoxification; lipid emulsion; lipid sink; poisoning; shock.

Publication types

  • Review

Grants and funding

This research received no external funding.