Rational Design of Monolithic g-C3N4 with Floating Network Porous-like Sponge Monolithic Structure for Boosting Photocatalytic Degradation of Tetracycline under Simulated and Natural Sunlight Illumination

Molecules. 2023 May 9;28(10):3989. doi: 10.3390/molecules28103989.

Abstract

In order to solve the problems of powder g-C3N4 catalysts being difficult to recycle and prone to secondary pollution, floating network porous-like sponge monolithic structure g-C3N4 (FSCN) was prepared with a one-step thermal condensation method using melamine sponge, urea, and melamine as raw materials. The phase composition, morphology, size, and chemical elements of the FSCN were studied using XRD, SEM, XPS, and UV-visible spectrophotometry. Under simulated sunlight, the removal rate for 40 mg·L-1 tetracycline (TC) by FSCN reached 76%, which was 1.2 times that of powder g-C3N4. Under natural sunlight illumination, the TC removal rate of FSCN was 70.4%, which was only 5.6% lower than that of a xenon lamp. In addition, after three repeated uses, the removal rates of the FSCN and powder g-C3N4 samples decreased by 1.7% and 2.9%, respectively, indicating that FSCN had better stability and reusability. The excellent photocatalytic activity of FSCN benefits from its three-dimensional-network sponge-like structure and outstanding light absorption properties. Finally, a possible degradation mechanism for the FSCN photocatalyst was proposed. This photocatalyst can be used as a floating catalyst for the treatment of antibiotics and other types of water pollution, providing ideas for the photocatalytic degradation of pollutants in practical applications.

Keywords: floating catalyst; g-C3N4; natural sunlight; photocatalysis; tetracycline.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Catalysis
  • Graphite* / chemistry
  • Heterocyclic Compounds*
  • Light
  • Lighting
  • Porosity
  • Powders
  • Sunlight
  • Tetracycline

Substances

  • Powders
  • Graphite
  • Anti-Bacterial Agents
  • Tetracycline
  • Heterocyclic Compounds