Morpho-Functional Assessment of Retinal Ganglion Cells and Visual Pathways in Patients with Optic Disc Drusen: Superficial Drusen Visible Height as a Marker of Impairment

J Clin Med. 2023 May 12;12(10):3432. doi: 10.3390/jcm12103432.

Abstract

The aim of this study was to assess the morpho-functional involvement of the retinal ganglion cells (RGCs) and of the visual pathways in patients with superficial (ODD-S) or deep (ODD-D) optic disc drusen. This study enrolled 17 patients with ODD (mean age of 59.10 ± 12.68 years) providing 19 eyes and 20 control subjects (mean age 58.62 ± 8.77 years) providing 20 eyes. We evaluated the following: best-corrected visual acuity, visual field mean deviation (MD), the amplitude (A) of Pattern Electroretinogram (PERG), the implicit time (IT) and A of Visual Evoked Potentials (VEPs), retinal nerve fiber layer thickness (RNFL-T) and ganglion cell thickness (GC-T). In ODD-S eyes, the drusen visible height was measured. ODD-D and ODD-S were detected in 26.3% and 73.7% of ODD eyes, respectively. Significantly (p < 0.01) reduced MD, PERG A, VEP amplitude, RNFL-T and GC-T values and significantly (p < 0.01) increased VEP IT values were found in the ODD Group as compared to the Control one. In the ODD Group, no significant correlation (p > 0.01) between PERG As and VEP ITs was found. In ODD-S, the visible height was significantly correlated (p < 0.01) with reduced MD, PERG As and RNFL-T and with increased PSD and VEP IT values. Our findings suggest that ODD might induce morpho-functional changes in RGCs and their fibers and an unrelated visual pathway dysfunction leading or not leading to visual field defects. The observed morpho-functional impairment should be ascribed to an alteration in retrograde (from the axons to the RGCs) and anterograde (from the RGCs up to the visual cortex) axoplasmic transport. In ODD-S eyes, a minimum visible height of 300 microns represented the threshold for the abnormalities, suggesting that "the higher the ODD, the worse the impairment".

Keywords: OCT; PERG; RGCs; VEP; optic disc drusen.

Grants and funding

This research received no external funding.