Kitchen Characteristics and Practices Associated with Increased PM2.5 Concentration Levels in Zimbabwean Rural Households

Int J Environ Res Public Health. 2023 May 12;20(10):5811. doi: 10.3390/ijerph20105811.

Abstract

Household air pollution (HAP) from biomass fuels significantly contributes to cardio-respiratory morbidity and premature mortality globally. Particulate matter (PM), one of the pollutants generated, remains the most accurate indicator of household air pollution. Determining indoor air concentration levels and factors influencing these levels at the household level is of prime importance, as it objectively guides efforts to reduce household air pollution. This paper describes household factors associated with increased PM2.5 levels in Zimbabwean rural household kitchens. Our HAP and lung health in women study enrolled 790 women in rural and urban households in Zimbabwe between March 2018 and December 2019. Here, we report data from 148 rural households using solid fuel as the primary source of fuel for cooking and heating and where indoor air samples were collected. Data on kitchen characteristics and practices were collected cross-sectionally using an indoor walk-through survey and a modified interviewer-administered questionnaire. An Air metrics miniVol Sampler was utilized to collect PM2.5 samples from the 148 kitchens over a 24 h period. To identify the kitchen features and practices that would likely influence PM2.5 concentration levels, we applied a multiple linear regression model. The measured PM2.5 ranged from 1.35 μg/m3 to 1940 μg/m3 (IQR: 52.1-472). The PM2.5 concentration levels in traditional kitchens significantly varied from the townhouse type kitchens, with the median for each kitchen being 291.7 μg/m3 (IQR: 97.2-472.2) and 1.35 μg/m3 (IQR: 1.3-97.2), respectively. The use of wood mixed with other forms of biomass was found to have a statistically significant association (p < 0.001) with increased levels of PM2.5 concentration. In addition, cooking indoors was strongly associated with higher PM2.5 concentrations (p = 0.012). Presence of smoke deposits on walls and roofs of the kitchens was significantly associated with increased PM2.5 concentration levels (p = 0.044). The study found that kitchen type, energy type, cooking place, and smoke deposits were significant predictors of increased PM2.5 concentrations in the rural households. Concentrations of PM2.5 were high as compared to WHO recommended exposure limits for PM2.5. Our findings highlight the importance of addressing kitchen characteristics and practices associated with elevated PM2.5 concentrations in settings where resources are limited and switching to cleaner fuels may not be an immediate feasible option.

Keywords: Zimbabwe; biomass fuels; fine particulate matter (PM2.5); household air pollution; kitchen characteristics; women.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution, Indoor* / analysis
  • Cooking
  • Environmental Monitoring
  • Female
  • Humans
  • Particulate Matter / analysis
  • Rural Population
  • Smoke
  • Zimbabwe / epidemiology

Substances

  • Particulate Matter
  • Air Pollutants
  • Smoke