Single-Locus and Multi-Locus Genome-Wide Association Studies Identify Genes Associated with Liver Cu Concentration in Merinoland Sheep

Genes (Basel). 2023 May 8;14(5):1053. doi: 10.3390/genes14051053.

Abstract

Economic losses due to copper intoxication or deficiency is a problem encountered by sheep farmers. The aim of this study was to investigate the ovine genome for genomic regions and candidate genes responsible for variability in liver copper concentration. Liver samples were collected from slaughtered lambs of the Merinoland breed from two farms, and used for measurement of copper concentration and genome-wide association study (GWAS). A total of 45,511 SNPs and 130 samples were finally used for analysis, in which single-locus and several multi-locus GWAS (SL-GWAS; ML-GWAS) methods were employed. Gene enrichment analysis was performed for identified candidate genes to detect gene ontology (GO) terms significantly associated with hepatic copper levels. The SL-GWAS and a minimum of two ML-GWAS identified two and thirteen significant SNPs, respectively. Within genomic regions surrounding identified SNPs, we observed nine promising candidate genes such as DYNC1I2, VPS35, SLC38A9 and CHMP1A. GO terms such as lysosomal membrane, mitochondrial inner membrane and sodium:proton antiporter activity were significantly enriched. Genes involved in these identified GO terms mediate multivesicular body (MVB) fusion with lysosome for degradation and control mitochondrial membrane permeability. This reveals the polygenic status of this trait and candidate genes for further studies on breeding for copper tolerance in sheep.

Keywords: ML-GWAS; Merinoland sheep; SL-GWAS; candidate genes; liver copper concentration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Copper* / toxicity
  • Genome
  • Genome-Wide Association Study*
  • Genomics
  • Liver
  • Sheep / genetics

Substances

  • Copper

Grants and funding

This research was funded by the H. Wilhelm Schaumann Stiftung and by the Deutsche Forschungsgemeinschaft (DFG, grant no. 62202147).