Molecular Docking of Natural Compounds for Potential Inhibition of AhR

Foods. 2023 May 11;12(10):1953. doi: 10.3390/foods12101953.

Abstract

The aryl hydrocarbon receptor (AhR) is a highly conserved environmental sensor, historically known for mediating the toxicity of xenobiotics. It is involved in numerous cellular processes such as differentiation, proliferation, immunity, inflammation, homeostasis, and metabolism. It exerts a central role in several conditions such as cancer, inflammation, and aging, acting as a transcription factor belonging to the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) protein family. A key step in the canonical AhR activation is AhR-ARNT heterodimerization followed by the binding to the xenobiotic-responsive elements (XREs). The present work aims to investigate the potential AhR inhibitory activity of selected natural compounds. Due to the absence of a complete structure of human AhRs, a model consisting of the bHLH, the PAS A, and the PAS B domains was constructed. Blind and focused docking simulations revealed the presence of further binding pockets, different from the canonical one presented in the PAS B domain, which could be important for AhR inhibition due to the possibility to impede AhR:ARNT heterodimerization, either preventing conformational changes or masking crucial sites necessary for protein-protein interaction. Two of the compounds retrieved from the docking simulations, i.e., β-carotene and ellagic acid, confirmed their capacity of inhibiting benzo[a]pyrene (BaP)-induced AhR activation in in vitro tests on the human hepatoma cell line HepG2, validating the efficacy of the computational approach.

Keywords: aryl hydrocarbon receptor; benzo[a]pyrene; molecular docking; phytochemicals.