IH-TCGAN: Time-Series Conditional Generative Adversarial Network with Improved Hausdorff Distance for Synthesizing Intention Recognition Data

Entropy (Basel). 2023 May 11;25(5):781. doi: 10.3390/e25050781.

Abstract

As military technology continues to evolve and the amount of situational information available on the battlefield continues to increase, data-driven deep learning methods are becoming the primary method for air target intention recognition. Deep learning is based on a large amount of high quality data; however, in the field of intention recognition, it often faces key problems such as low data volume and unbalanced datasets due to insufficient real-world scenarios. To address these problems, we propose a new method called time-series conditional generative adversarial network with improved Hausdorff distance (IH-TCGAN). The innovation of the method is mainly reflected in three aspects: (1) Use of a transverter to map real and synthetic data into the same manifold so that they have the same intrinsic dimension; (2) Addition of a restorer and a classifier in the network structure to ensure that the model can generate high-quality multiclass temporal data; (3) An improved Hausdorff distance is proposed that can measure the time order differences between multivariate time-series data and make the generated results more reasonable. We conduct experiments using two time-series datasets, evaluate the results using various performance metrics, and visualize the results using visualization techniques. The experimental results show that IH-TCGAN is able to generate synthetic data similar to the real data and has significant advantages in the generation of time series data.

Keywords: Hausdorff distance; data augmentation; generative adversarial network; intention recognition; multivariate time series.