Energy Stability Property of the CPR Method Based on Subcell Second-Order CNNW Limiting in Solving Conservation Laws

Entropy (Basel). 2023 Apr 28;25(5):729. doi: 10.3390/e25050729.

Abstract

This paper studies the energy stability property of the correction procedure via reconstruction (CPR) method with staggered flux points based on second-order subcell limiting. The CPR method with staggered flux points uses the Gauss point as the solution point, dividing flux points based on Gauss weights, with the flux points being one more point than the solution points. For subcell limiting, a shock indicator is used to detect troubled cells where discontinuities may exist. Troubled cells are calculated by the second-order subcell compact nonuniform nonlinear weighted (CNNW2) scheme, which has the same solution points as the CPR method. The smooth cells are calculated by the CPR method. The linear energy stability of the linear CNNW2 scheme is proven theoretically. Through various numerical experiments, we demonstrate that the CNNW2 scheme and CPR method based on subcell linear CNNW2 limiting are energy-stable and that the CPR method based on subcell nonlinear CNNW2 limiting is nonlinearly stable.

Keywords: conservation laws; correction procedure via reconstruction (CPR); energy stability; second-order compact nonuniform nonlinear weighted (CNNW2) scheme.