Assessment of acrylamide exposure in Spain by human biomonitoring: Risk and predictors of exposure

Environ Pollut. 2023 Aug 15;331(Pt 2):121896. doi: 10.1016/j.envpol.2023.121896. Epub 2023 May 24.

Abstract

Acrylamide (AA), a chemical compound currently classified as "reasonably anticipated to be a human carcinogen", is formed through the Maillard reaction in processed carbohydrate-rich foods and is also present in tobacco smoke. The primary sources of AA exposure in the general population are dietary intake and inhalation. Within a 24-h period, humans eliminate approximately 50% of AA in the urine, predominantly in the form of mercapturic acid conjugates such as N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2- hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul). These metabolites serve as short-term biomarkers for AA exposure in human biomonitoring studies. In this study, we analysed first-morning urine samples from the adult population (aged 18-65 years) residing in the Valencian Region, Spain, (n = 505). AAMA, GAMA-3 and AAMA-Sul were quantified in 100% of the analysed samples, with geometric means (GM) of 84, 11 and 26 μg L-1, respectively, while the estimated daily intake of AA in the studied population ranged from 1.33 to 2.13 μg·kg-bw-1·day-1 (GM). Statistical analysis of the data indicated that the most significant predictors of AA exposure were smoking and the amount of potato fried products and, biscuits and pastries consumed last 24 h. Based on risk assessment approaches conducted, the findings suggest that exposure to AA could pose a potential health risk. Therefore, it is crucial to closely monitor and continuously evaluate AA exposure to ensure the well-being of the population.

Keywords: Acrylamide; Adult population; Human biomonitoring; Risk assessment; Spain; Urine.

MeSH terms

  • Acetylcysteine / metabolism
  • Acrylamide* / metabolism
  • Adult
  • Biological Monitoring*
  • Humans
  • Smoking
  • Spain

Substances

  • Acrylamide
  • Acetylcysteine