Combined effects of ambient air pollution and PM2.5 components on renal function and the potential mediation effects of metabolic risk factors in China

Ecotoxicol Environ Saf. 2023 Jul 1:259:115039. doi: 10.1016/j.ecoenv.2023.115039. Epub 2023 May 24.

Abstract

Growing evidence links long-term air pollution exposure with renal function. However, little research has been conducted on the combined effects of air pollutant mixture on renal function and multiple mediation effects of metabolic risk factors. This study enrolled 8996 adults without chronic kidney disease (CKD) at baseline from the CHCN-BTH cohort study. Three-year exposure to air pollutants [particulate matter ≤ 2.5 µm (PM2.5), PM10, PM1, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO)] and PM2.5 components [black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-) and organic matter (OM)] were assessed using well-validated machine learning methods. Linear mixed models were applied to investigate the associations between air pollutants and estimated glomerular filtration rate (eGFR). Quantile G-computation was used to assess the combined effects of pollutant mixtures. Causal mediation analysis and Bayesian mediation analysis were employed to estimate the mediation effects of metabolic risk factors. An interquartile range increases in BC (-0.256, 95 %CI: -0.331, -0.180) and OM (-0.603, 95 %CI: -0.810, -0.397) were significantly associated with eGFR decline; while O3 (1.151, 95 %CI: 0.813, 1.489), PM10 (0.721, 95 %CI: 0.309, 1.133), NH4+ (0.990, 95 %CI: 0.638, 1.342), and NO3- (0.610, 95 %CI: 0.405, 0.815) were associated with higher eGFR. The combined effect of the PM2.5 component mixture was found to be associated with lower eGFR (-1.147, 95 % CI: -1.456, -0.839), with OM contributing 72.4 % of the negative effect. Univariate mediation analyses showed that high-density lipoprotein (HDL) mediated 7.1 %, 6.9 %, and 6.1 % effects of O3, BC, and OM, respectively. However, these mediation effects were not significant in Bayesian mediation analysis. These findings suggest the effect of the PM2.5 component mixture on eGFR decline and the strong contribution of OM. Metabolic risk factors may not mediate the effects of air pollutants. Further study is warranted to clarify the potential mechanisms involved.

Keywords: Air pollution; Bayesian mediation analysis; Combined effects; Estimated glomerular filtration rate; PM(2.5) components.

MeSH terms

  • Adult
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Bayes Theorem
  • China
  • Cohort Studies
  • Environmental Exposure / analysis
  • Humans
  • Kidney / chemistry
  • Kidney / physiology
  • Nitrogen Dioxide / analysis
  • Particulate Matter / analysis
  • Risk Factors

Substances

  • Air Pollutants
  • Particulate Matter
  • Nitrogen Dioxide