Mechanical Surface Treatments for Controlling Surface Integrity and Corrosion Resistance of Mg Alloy Implants: A Review

J Funct Biomater. 2023 Apr 24;14(5):242. doi: 10.3390/jfb14050242.

Abstract

The present paper aims to provide an overview of the current state-of-the-art mechanical surface modification technologies and their response in terms of surface roughness, surface texture, and microstructural change due to cold work-hardening, affecting the surface integrity and corrosion resistance of different Mg alloys. The process mechanics of five main treatment strategies, namely, shot peening, surface mechanical attrition treatment, laser shock peening, ball burnishing, and ultrasonic nanocrystal surface modification, were discussed. The influence of the process parameters on plastic deformation and degradation characteristics was thoroughly reviewed and compared from the perspectives of surface roughness, grain modification, hardness, residual stress, and corrosion resistance over short- and long-term periods. Potential and advances in new and emerging hybrid and in-situ surface treatment strategies were comprehensively eluded and summarised. This review takes a holistic approach to identifying the fundamentals, pros, and cons of each process, thereby contributing to bridging the current gap and challenge in surface modification technology for Mg alloys. To conclude, a brief summary and future outlook resulting from the discussion were presented. The findings would offer a useful insight and guide for researchers to focus on developing new surface treatment routes to resolve surface integrity and early degradation problems for successful application of biodegradable Mg alloy implants.

Keywords: biodegradable magnesium alloys; corrosion resistance; hybrid manufacturing; surface integrity; surface mechanical treatment.

Publication types

  • Review

Grants and funding

This research received no external funding.