Transient Gel Electrophoresis of a Spherical Colloidal Particle

Gels. 2023 Apr 23;9(5):356. doi: 10.3390/gels9050356.

Abstract

The general theory is developed for the time-dependent transient electrophoresis of a weakly charged spherical colloidal particle with an electrical double layer of arbitrary thickness in an uncharged or charged polymer gel medium. The Laplace transform of the transient electrophoretic mobility of the particle with respect to time is derived by considering the long-range hydrodynamic interaction between the particle and the polymer gel medium on the basis of the Brinkman-Debye-Bueche model. According to the obtained Laplace transform of the particle's transient electrophoretic mobility, the transient gel electrophoretic mobility approaches the steady gel electrophoretic mobility as time approaches infinity. The present theory of the transient gel electrophoresis also covers the transient free-solution electrophoresis as its limiting case. It is shown that the relaxation time for the transient gel electrophoretic mobility to reach its steady value is shorter than that of the transient free-solution electrophoretic mobility and becomes shorter as the Brinkman screening length decreases. Some limiting or approximate expressions are derived for the Laplace transform of the transient gel electrophoretic mobility.

Keywords: gel electrophoresis; transient electrophoresis; transient gel electrophoresis.

Grants and funding

This research received no external funding.