Image Quality Improvement of Low-dose Abdominal CT using Deep Learning Image Reconstruction Compared with the Second Generation Iterative Reconstruction

Curr Med Imaging. 2024:20:e250523217310. doi: 10.2174/1573405620666230525104809.

Abstract

Background: Whether deep learning-based CT reconstruction could improve lesion conspicuity on abdominal CT when the radiation dose is reduced is controversial.

Objectives: To determine whether DLIR can provide better image quality and reduce radiation dose in contrast-enhanced abdominal CT compared with the second generation of adaptive statistical iterative reconstruction (ASiR-V).

Aims: This study aims to determine whether deep-learning image reconstruction (DLIR) can improve image quality.

Method: In this retrospective study, a total of 102 patients were included, who underwent abdominal CT using a DLIR-equipped 256-row scanner and routine CT of the same protocol on the same vendor's 64-row scanner within four months. The CT data from the 256-row scanner were reconstructed into ASiR-V with three blending levels (AV30, AV60, and AV100), and DLIR images with three strength levels (DLIR-L, DLIR-M, and DLIR-H). The routine CT data were reconstructed into AV30, AV60, and AV100. The contrast-to-noise ratio (CNR) of the liver, overall image quality, subjective noise, lesion conspicuity, and plasticity in the portal venous phase (PVP) of ASiR-V from both scanners and DLIR were compared.

Results: The mean effective radiation dose of PVP of the 256-row scanner was significantly lower than that of the routine CT (6.3±2.0 mSv vs. 2.4±0.6 mSv; p< 0.001). The mean CNR, image quality, subjective noise, and lesion conspicuity of ASiR-V images of the 256-row scanner were significantly lower than those of ASiR-V images at the same blending factor of routine CT, but significantly improved with DLIR algorithms. DLIR-H showed higher CNR, better image quality, and subjective noise than AV30 from routine CT, whereas plasticity was significantly better for AV30.

Conclusion: DLIR can be used for improving image quality and reducing radiation dose in abdominal CT, compared with ASIR-V.

Keywords: CT; abdomen; deep learning image reconstruction; image quality; iterative reconstruction; radiation dose.

MeSH terms

  • Deep Learning*
  • Humans
  • Image Processing, Computer-Assisted
  • Quality Improvement
  • Radiation Dosage
  • Radiographic Image Interpretation, Computer-Assisted / methods
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods