Patulin-imprinted origami 3D-ePAD based on graphene screen-printed electrode modified with Mn-ZnS quantum dot coated with a molecularly imprinted polymer

Talanta. 2023 Sep 1:262:124695. doi: 10.1016/j.talanta.2023.124695. Epub 2023 May 20.

Abstract

We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 μM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.

Keywords: Core-shell; Electrochemical paper-based analytical device (ePAD); Molecularly imprinted polymer (MIP); Mycotoxin; Screen-printed graphene electrodes.