Vitamin C Urinary Loss in Fabry Disease: Clinical and Genomic Characteristics of Vitamin C Renal Leak

J Nutr. 2023 Jul;153(7):1994-2003. doi: 10.1016/j.tjnut.2022.12.009. Epub 2023 Mar 10.

Abstract

Background: Reduced plasma vitamin C concentrations in chronic diseases may result from abnormal urinary excretion of vitamin C: a renal leak. We hypothesized that vitamin C renal leak may be associated with disease-mediated renal dysregulation, resulting in aberrant vitamin C renal reabsorption and increased urinary loss.

Objectives: We investigated the prevalence, clinical characteristics, and genomic associations of vitamin C renal leak in Fabry disease, an X-linked lysosomal disease associated with renal tubular dysfunction and low plasma vitamin C concentrations.

Methods: We conducted a non-randomized cross-sectional cohort study of men aged 24-42 y, with Fabry disease (n = 34) and controls without acute or chronic disease (n = 33). To match anticipated plasma vitamin C concentrations, controls were placed on a low-vitamin C diet 3 wk before inpatient admission. To determine the primary outcome of vitamin C renal leak prevalence, subjects were fasted overnight, and matched urine and fasting plasma vitamin C measurements were obtained the following morning. Vitamin C renal leak was defined as presence of urinary vitamin C at plasma concentrations below 38 μM. Exploratory outcomes assessed the association between renal leak and clinical parameters, and genomic associations with renal leak using single nucleotide polymorphisms (SNPs) in the vitamin C transporter SLC23A1.

Results: Compared with controls, the Fabry cohort had 16-fold higher odds of renal leak (6% vs. 52%; OR: 16; 95% CI: 3.30, 162; P < 0.001). Renal leak was associated with higher protein creatinine ratio (P < 0.01) and lower hemoglobin (P = 0.002), but not estimated glomerular filtration rate (P = 0.54). Renal leak, but not plasma vitamin C, was associated with a nonsynonymous single nucleotide polymorphism in vitamin C transporter SLC23A1 (OR: 15; 95% CI: 1.6, 777; P = 0.01).

Conclusions: Increased prevalence of renal leak in adult men with Fabry disease may result from dysregulated vitamin C renal physiology and is associated with abnormal clinical outcomes and genomic variation.

Keywords: Fabry disease; ascorbate; ascorbic acid; nutrition; renal leak; vitamin C.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Ascorbic Acid
  • Cross-Sectional Studies
  • Fabry Disease* / complications
  • Fabry Disease* / urine
  • Genomics
  • Glomerular Filtration Rate
  • Humans
  • Kidney / metabolism
  • Male
  • Vitamins

Substances

  • Ascorbic Acid
  • Vitamins