Benzo[ g]quinazolines as antifungal against candidiasis: Screening, molecular docking, and QSAR investigations

Saudi Pharm J. 2023 Jun;31(6):815-823. doi: 10.1016/j.jsps.2023.04.012. Epub 2023 Apr 15.

Abstract

Candida albicans, an opportunistic pathogen, is the most common type of fungus and represents a substantial source of human invasive disease (nosocomial infection). This category of fungi are part of our microbiota, and given the appropriate environmental conditions, it has the potential to cause both superficial and systemic infections. There is a soaring resistance against the available anticandidal agents. The purpose of this research is to investigate the activity of certain previously synthesized benzo[g]quinazolines against C. albicans in vitro by using the cup-plate diffusion method. There was a marked difference in the effectiveness of the target compounds 1-6 against the sample of C. albicans that was tested. Benzo[g]quinazolines 1 (inhibition zone = 20 mm) and 2 (inhibition zone = 22 mm) had good effects in comparison to fluconazole (inhibition zone = 26 mm). A docking study was conducted between benzo[g]quinazolines 1-6 and Candida spp. CYP51 to establish the binding mode compared with fluconazole and VT-1161 (oteseconazole) as reference medicines, and it was determined that binding at the active site of Candida spp. CYP51 occurred in the same manner. Quantitative structure-activity relationship (QSAR) investigation was performed to further characterize the identified anticandidal agents and recognize the major regulatory components governing such activity. In future studies, the benzo[g]quinazoline scaffold could serve as a model for the design and development of novel derivatives with antifungal potential.

Keywords: Anticandidal agent; Benzo[g]quinazolines; CYP51; Candida albicans; Molecular docking; Quantitative structure–activity relationship.