Asphericity derived from [18F]FDG PET as a new prognostic parameter in cervical cancer patients

Sci Rep. 2023 May 24;13(1):8423. doi: 10.1038/s41598-023-35191-8.

Abstract

The objective of this study was to assess the prognostic value of asphericity (ASP) and standardized uptake ratio (SUR) in cervical cancer patients. Retrospective analysis was performed on a group of 508 (aged 55 ± 12 years) previously untreated cervical cancer patients. All patients underwent a pretreatment [18F]FDG PET/CT study to assess the severity of the disease. The metabolic tumor volume (MTV) of the cervical cancer was delineated with an adaptive threshold method. For the resulting ROIs the maximum standardized uptake value (SUVmax) was measured. In addition, ASP and SUR were determined as previously described. Univariate Cox regression and Kaplan-Meier analysis with respect to event free survival (EFS), overall survival (OS), freedom from distant metastasis (FFDM) and locoregional control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. In the survival analysis, MTV and ASP were shown to be prognostic factors for all investigated endpoints. Tumor metabolism quantified with the SUVmax was not prognostic for any of the endpoints (p > 0.2). The SUR did not reach statistical significance either (p = 0.1, 0.25, 0.066, 0.053, respectively). In the multivariate analysis, the ASP remained a significant factor for EFS and LRC, while MTV was a significant factor for FFDM, indicating their independent prognostic value for the respective endpoints. The alternative parameter ASP has the potential to improve the prognostic value of [18F]FDG PET/CT for event-free survival and locoregional control in radically treated cervical cancer patients.

MeSH terms

  • Biological Transport
  • Female
  • Fluorodeoxyglucose F18
  • Humans
  • Positron Emission Tomography Computed Tomography
  • Retrospective Studies
  • Uterine Cervical Neoplasms* / diagnostic imaging

Substances

  • Fluorodeoxyglucose F18