Cyclic di-AMP, a multifaceted regulator of central metabolism and osmolyte homeostasis in Listeria monocytogenes

Microlife. 2023 Jan 28:4:uqad005. doi: 10.1093/femsml/uqad005. eCollection 2023.

Abstract

Cyclic di-AMP is an emerging second messenger that is synthesized by many archaea and bacteria, including the Gram-positive pathogenic bacterium Listeria monocytogenes. Listeria monocytogenes played a crucial role in elucidating the essential function of c-di-AMP, thereby becoming a model system for studying c-di-AMP metabolism and the influence of the nucleotide on cell physiology. c-di-AMP is synthesized by a diadenylate cyclase and degraded by two phosphodiesterases. To date, eight c-di-AMP receptor proteins have been identified in L. monocytogenes, including one that indirectly controls the uptake of osmotically active peptides and thus the cellular turgor. The functions of two c-di-AMP-receptor proteins still need to be elucidated. Here, we provide an overview of c-di-AMP signalling in L. monocytogenes and highlight the main differences compared to the other established model systems in which c-di-AMP metabolism is investigated. Moreover, we discuss the most important questions that need to be answered to fully understand the role of c-di-AMP in osmoregulation and in the control of central metabolism.

Keywords: CodY; Osmolyte; essential gene; osmoregulation; second messenger; turgor.

Publication types

  • Review