Construction of Co4 Atomic Clusters to Enable Fe-N4 Motifs with Highly Active and Durable Oxygen Reduction Performance

Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202303185. doi: 10.1002/anie.202303185. Epub 2023 Jun 14.

Abstract

Fe-N-C catalysts with single-atom Fe-N4 configurations are highly needed owing to the high activity for oxygen reduction reaction (ORR). However, the limited intrinsic activity and dissatisfactory durability have significantly restrained the practical application of proton-exchange membrane fuel cells (PEMFCs). Here, we demonstrate that constructing adjacent metal atomic clusters (ACs) is effective in boosting the ORR performance and stability of Fe-N4 catalysts. The integration of Fe-N4 configurations with highly uniform Co4 ACs on the N-doped carbon substrate (Co4 @/Fe1 @NC) is realized through a "pre-constrained" strategy using Co4 molecular clusters and Fe(acac)3 implanted carbon precursors. The as-developed Co4 @/Fe1 @NC catalyst exhibits excellent ORR activity with a half-wave potential (E1/2 ) of 0.835 V vs. RHE in acidic media and a high peak power density of 840 mW cm-2 in a H2 -O2 fuel cell test. First-principles calculations further clarify the ORR catalytic mechanism on the identified Fe-N4 that modified with Co4 ACs. This work provides a viable strategy for precisely establishing atomically dispersed polymetallic centers catalysts for efficient energy-related catalysis.

Keywords: Atomic Clusters; Fuel Cell; Oxygen Reduction Reaction; Single-Atom Catalysts.