Evaluation of Omadacycline Alone and in Combination with Rifampin against Staphylococcus aureus and Staphylococcus epidermidis in an In Vitro Pharmacokinetic/Pharmacodynamic Biofilm Model

Antimicrob Agents Chemother. 2023 Jun 15;67(6):e0131722. doi: 10.1128/aac.01317-22. Epub 2023 May 24.

Abstract

Biofilm-associated infections lead to substantial morbidity. Omadacycline (OMC) is a novel aminomethylcycline with potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis, but data surrounding its use in biofilm-associated infections are lacking. We investigated the activity of OMC alone and in combination with rifampin (RIF) against 20 clinical strains of staphylococci in multiple in vitro biofilm analyses, including an in vitro pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor (CBR) model (simulating human exposures). The observed MICs for OMC demonstrated potent activity against the evaluated strains (0.125 to 1 mg/L), with an increase of MICs generally observed in the presence of biofilm (0.25 to >64 mg/L). Furthermore, RIF was shown to reduce OMC biofilm MICs (bMICs) in 90% of strains, and OMC plus RIF combination in biofilm time-kill analyses (TKAs) exhibited synergistic activity in most of the strains. Within the PK/PD CBR model, OMC monotherapy primarily displayed bacteriostatic activity, while RIF monotherapy generally exhibited initial bacterial eradication, followed by rapid regrowth likely due to the emergence of RIF resistance (RIF bMIC, >64 mg/L). However, the combination of OMC plus RIF produced rapid and sustained bactericidal activity in nearly all the strains (3.76 to 4.03 log10 CFU/cm2 reductions from starting inoculum in strains in which bactericidal activity was reached). Furthermore, OMC was shown to prevent the emergence of RIF resistance. Our data provide preliminary evidence that OMC in combination with RIF could be a viable option for biofilm-associated infections with S. aureus and S. epidermidis. Further research involving OMC in biofilm-associated infections is warranted.

Keywords: biofilm; omadacycline; rifampin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Biofilms
  • Humans
  • Microbial Sensitivity Tests
  • Rifampin* / pharmacology
  • Staphylococcal Infections* / drug therapy
  • Staphylococcal Infections* / microbiology
  • Staphylococcus aureus
  • Staphylococcus epidermidis

Substances

  • Rifampin
  • Anti-Bacterial Agents
  • omadacycline