Cotransport of different electrically charged microplastics with PFOA in saturated porous media

Environ Pollut. 2023 Aug 15;331(Pt 2):121862. doi: 10.1016/j.envpol.2023.121862. Epub 2023 May 21.

Abstract

The fate and transport behavior of microplastics (MPs), emerging colloidal contaminant ubiquitous in natural environments, would be greatly affected by other copresent pollutants. PFOA (emerging surfactant pollutant) would interact with MPs after encounter with them in natural environments, which could alter the transport behavior of both pollutants. Relevant knowledge is still lacking, affecting accurate prediction the fate and distribution of these two emerging contaminants in natural porous media. The cotransport behavior of different surface charged MPs (negatively/positively charged, CMPs/AMPs) with PFOA (three concentrations ranging from 0.1 to 10 mg/L) in porous media in both 10 and 50 mM NaCl solutions thus was investigated in the present study. We found PFOA inhibited CMPs transport in porous media, while enhanced AMPs transport. The mechanisms leading to the altered transport of CMPs/AMPs caused by PFOA were found to be different. The decreased electrostatic repulsion between CMPs-sand induced by the decreased CMPs negative zeta potentials via the adsorption of PFOA led to the inhibited transport of CMPs in CMPs-PFOA suspension. The enhanced electrostatic repulsion between AMPs-sand due to the decreased positive charge of AMPs via the adsorption of PFOA together with steric repulsion induced by suspended PFOA resulted in the increased transport of AMPs in AMPs-PFOA suspension. Meanwhile, we found that the adsorption onto MPs surfaces also impacted the transport of PFOA. Due to the lower mobility of MPs than PFOA, the presence of MPs despite their surface charge decreased the transport of PFOA of all examined concentrations in quartz sand columns. This study demonstrates that when MPs and PFOA are co-existing in environments, their interaction with each other will alter the fate and transport behavior of both pollutants in porous media and the alteration is highly correlated with the amount of PFOA adsorbed onto MPs and original surface properties of MPs.

Keywords: Adsorption; Carrier effect; Column experiment; Perfluorinated compounds; Plastic particles.

MeSH terms

  • Microplastics*
  • Plastics
  • Porosity
  • Sand
  • Silicon Dioxide*
  • Suspensions

Substances

  • Silicon Dioxide
  • Microplastics
  • Plastics
  • Sand
  • Suspensions