Actin-binding protein filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1

J Biol Chem. 2023 Jul;299(7):104851. doi: 10.1016/j.jbc.2023.104851. Epub 2023 May 21.

Abstract

Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.

Keywords: G protein–coupled receptor (GPCR); cell migration; endothelial cell; filamin; proximity labeling proteomics; receptor internalization; sphingolipid; sphingosine 1-phosphate (S1P).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • Endothelial Cells / metabolism
  • Filamins* / genetics
  • Filamins* / metabolism
  • Gene Knockdown Techniques
  • Humans
  • Lysophospholipids / metabolism
  • Protein Transport
  • Proteomics
  • Sphingosine / metabolism
  • Sphingosine-1-Phosphate Receptors* / metabolism

Substances

  • Filamins
  • Lysophospholipids
  • Sphingosine
  • sphingosine 1-phosphate
  • Sphingosine-1-Phosphate Receptors
  • S1PR1 protein, human
  • FLNB protein, human