Cross-Channel Specific-Mutual Feature Transfer Learning for Motor Imagery EEG Signals Decoding

IEEE Trans Neural Netw Learn Syst. 2023 May 23:PP. doi: 10.1109/TNNLS.2023.3269512. Online ahead of print.

Abstract

In recent years, with the rapid development of deep learning, various deep learning frameworks have been widely used in brain-computer interface (BCI) research for decoding motor imagery (MI) electroencephalogram (EEG) signals to understand brain activity accurately. The electrodes, however, record the mixed activities of neurons. If different features are directly embedded in the same feature space, the specific and mutual features of different neuron regions are not considered, which will reduce the expression ability of the feature itself. We propose a cross-channel specific-mutual feature transfer learning (CCSM-FT) network model to solve this problem. The multibranch network extracts the specific and mutual features of brain's multiregion signals. Effective training tricks are used to maximize the distinction between the two kinds of features. Suitable training tricks can also improve the effectiveness of the algorithm compared with novel models. Finally, we transfer two kinds of features to explore the potential of mutual and specific features to enhance the expressive power of the feature and use the auxiliary set to improve identification performance. The experimental results show that the network has a better classification effect in the BCI Competition IV-2a and the HGD datasets.