Visualization of transparent particles based on optical spatial differentiation

Opt Lett. 2022 Nov 15;47(22):5754-5757. doi: 10.1364/OL.468452.

Abstract

Optical analog computing operates on the amplitude, phase, polarization, and frequency distributions of the electromagnetic field through the interaction of light and matter. The differentiation operation is widely used in all-optical image processing technology, such as edge detection. Here, we propose a concise way to observe transparent particles, incorporating the optical differential operation that occurs on a single particle. The particle's scattering and cross-polarization components combine into our differentiator. We achieve high-contrast optical images of transparent liquid crystal molecules. The visualization of aleurone grains (the structures that store protein particles in plant cells) in maize seed was experimentally demonstrated with a broadband incoherent light source. Avoiding the interference of stains, our designed method provides the possibility to observe protein particles directly in complex biological tissues.