Food biopolymer behaviors in the digestive tract: implications for nutrient delivery

Crit Rev Food Sci Nutr. 2023 May 22:1-19. doi: 10.1080/10408398.2023.2202778. Online ahead of print.

Abstract

Biopolymers are prevalent in both natural and processed foods, serving as thickeners, emulsifiers, and stabilizers. Although specific biopolymers are known to affect digestion, the mechanisms behind their influence on the nutrient absorption and bioavailability in processed foods are not yet fully understood. The aim of this review is to elucidate the complex interplay between biopolymers and their behavior in vivo, and to provide insights into the possible physiological consequences of their consumption. The colloidization process of biopolymer in various phases of digestion was analyzed and its impact on nutrition absorption and gastrointestinal tract was summarized. Furthermore, the review discusses the methodologies used to assess colloidization and emphasizes the need for more realistic models to overcome challenges in practical applications. By controlling macronutrient bioavailability using biopolymers, it is possible to enhance health benefits, such as improving gut health, aiding in weight management, and regulating blood sugar levels. The physiological effect of extracted biopolymers utilized in modern food structuring technology cannot be predicted solely based on their inherent functionality. It is essential to account for factors such as their initial consuming state and interactions with other food components to better understand the potential health benefits of biopolymers.

Keywords: Food technology and industry; colloidization; digestion; food skeleton; physiological effect.

Plain language summary

Food biopolymers (FBP) impact nutrient distribution differently in various digestion phases.FBP application can help tailor nutritional values for personalized dietary plans.FBP colloidization under complex interactions results challenges in practical applications.Accurate assessment of FBP colloidization requires combination of methodologies.Dietary FBP additives benefits and safety warrant investigation in real food matrix.