l-Asparaginase producing novel Streptomyces sp. HB2AG: optimization of process parameters and whole genome sequence analysis

3 Biotech. 2023 Jun;13(6):201. doi: 10.1007/s13205-023-03620-0. Epub 2023 May 19.

Abstract

l-asparaginase (ASNase) is a key enzyme widely used as an anti-cancer drug and is also used in the pharmaceutical and food processing industries. This enzyme's applications are determined by its source and nature. The production of the enzyme through the fermentation process is also crucial for economic feasibility. Searching for a new potent microbial strain is necessary for increased ASNase synthesis. In this work, a potent strain was isolated from the sediment of Chilika Lake and selected for its high ASNase production potential. It was recognized following Bergey's manual of determinative and phylogenetic analysis was carried out by 16S rDNA sequencing. The isolated organism was Streptomyces sp. HB2AG. Additionally, a genome-wide analysis of HB2AG was performed. The result showed that the HB2AG genome possesses a chromosome with 6,099,956 bp and GC content of 74.0%. The whole genome analysis of the strain HB2AG revealed the presence of ASNase (ansA, ansB) and Asparagine synthase (asnB) in the HB2AG genome. Optimization of media composition is crucial for microbial growth and obtaining the desired end product. The current effort focuses on the Taguchi orthogonal design to determine optimum factor combinations that would allow the strain to produce maximum ASNase enzyme. Results showed that compared to unoptimized media, approximately 1.76-fold higher ASNase production was observed in Sea Water Luria Bertani (SWLB) media, pH-5, 0.5% (w/v) of lactose, 0.5% (w/v) of casein, 2.5% (w/v) NaCl, 1 mM Ca2+ and 0.1% Tween 80.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03620-0.

Keywords: ASNase; Statistical optimization; Streptomyces sp.; Whole genome sequence.