Automatic Measuring of Finger Joint Space Width on Hand Radiograph using Deep Learning and Conventional Computer Vision Methods

Biomed Signal Process Control. 2023 Jul:84:104713. doi: 10.1016/j.bspc.2023.104713. Epub 2023 Mar 1.

Abstract

Hand osteoarthritis (OA) severity can be assessed visually through radiographs using semi-quantitative grading systems. However, these grading systems are subjective and cannot distinguish minor differences. Joint space width (JSW) compensates for these disadvantages, as it quantifies the severity of OA by accurately measuring the distances between joint bones. Current methods used to assess JSW require users' interaction to identify the joints and delineate initial joint boundary, which is time-consuming. To automate this process and offer a more efficient and robust measurement for JSW, we proposed two novel methods to measure JSW: 1) The segmentation-based (SEG) method, which uses traditional computer vision techniques to calculate JSW; 2) The regression-based (REG) method, which is a deep learning approach employing a modified VGG-19 network to predict JSW. On a dataset with 3,591 hand radiographs, 10,845 DIP joints were cut as regions of interest and served as input to the SEG and REG methods. The bone masks of the ROI images generated by a U-Net model were sent as input in addition to the ROIs. The ground truth of JSW was labeled by a trained research assistant using a semi-automatic tool. Compared with the ground truth, the REG method achieved a correlation coefficient of 0.88 and mean square error (MSE) of 0.02 mm on the testing set; the SEG method achieved a correlation coefficient of 0.42 and MSE of 0.15 mm. Results show the REG method has promising performance in automatic JSW measurement and in general, Deep Learning approaches can facilitate the automatic quantification of distance features in medical images.

Keywords: Computer Vision; Deep Learning; Hand Osteoarthritis; Joint Space Width; Segmentation.