PatA Regulates Isoniazid Resistance by Mediating Mycolic Acid Synthesis and Controls Biofilm Formation by Affecting Lipid Synthesis in Mycobacteria

Microbiol Spectr. 2023 Jun 15;11(3):e0092823. doi: 10.1128/spectrum.00928-23. Epub 2023 May 22.

Abstract

Lipids are prominent components of the mycobacterial cell wall, and they play critical roles not only in maintaining biofilm formation but also in resisting environmental stress, including drug resistance. However, information regarding the mechanism mediating mycobacterial lipid synthesis remains limited. PatA is a membrane-associated acyltransferase and synthesizes phosphatidyl-myo-inositol mannosides (PIMs) in mycobacteria. Here, we found that PatA could regulate the synthesis of lipids (except mycolic acids) to maintain biofilm formation and environmental stress resistance in Mycolicibacterium smegmatis. Interestingly, the deletion of patA significantly enhanced isoniazid (INH) resistance in M. smegmatis, although it reduced bacterial biofilm formation. This might be due to the fact that the patA deletion promoted the synthesis of mycolic acids through an unknown synthesis pathway other than the reported fatty acid synthase (FAS) pathway, which could effectively counteract the inhibition by INH of mycolic acid synthesis in mycobacteria. Furthermore, the amino acid sequences and physiological functions of PatA were highly conserved in mycobacteria. Therefore, we found a mycolic acid synthesis pathway regulated by PatA in mycobacteria. In addition, PatA also affected biofilm formation and environmental stress resistance by regulating the synthesis of lipids (except mycolic acids) in mycobacteria. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, leads to a large number of human deaths every year. This is so serious, which is due mainly to the drug resistance of mycobacteria. INH kills M. tuberculosis by inhibiting the synthesis of mycolic acids, which are synthesized by the FAS pathway. However, whether there is another mycolic acid synthesis pathway is unknown. In this study, we found a PatA-mediated mycolic acid synthesis pathway that led to INH resistance of in patA-deleted mutant. In addition, we first report the regulatory effect of PatA on mycobacterial biofilm formation, which could affect the bacterial response to environmental stress. Our findings represent a new model for regulating biofilm formation by mycobacteria. More importantly, the discovery of the PatA-mediated mycolic acid synthesis pathway indicates that the study of mycobacterial lipids has entered a new stage, and the enzymes might be new targets of antituberculosis drugs.

Keywords: INH resistance; biofilm formation; lipid synthesis; mycobacteria; mycolic acid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Biofilms
  • Humans
  • Isoniazid / pharmacology
  • Mycobacterium smegmatis / metabolism
  • Mycobacterium tuberculosis*
  • Mycolic Acids* / metabolism
  • Mycolic Acids* / pharmacology

Substances

  • Mycolic Acids
  • Isoniazid
  • Bacterial Proteins