Techno-economic analysis and optimization of near-zero energy and emission neighborhoods using biomass waste

Chemosphere. 2023 Sep:334:138978. doi: 10.1016/j.chemosphere.2023.138978. Epub 2023 May 17.

Abstract

The present study aims to simulate and design a near-Zero Energy neighborhood in one of the most significant industrial cities for reducing greenhouse gas emissions. For this building, biomass wastes are used for energy production, and also energy storage is provided using a battery pack system. Additionally, the Fanger model is used to assess the passengers' thermal comfort, and information on hot water usage is given. The transient performance of the aforementioned building is tested for one year using TRNSYS software, which was employed for this simulation. Wind turbines are considered electricity generators for this building, and any extra energy generated is stored in a battery pack for usage when the wind speed is insufficient and electricity is needed. Hot water is created using a biomass waste system and is kept in a hot water tank after being burned using a burner. A humidifier is utilized to ventilate the building, and a heat pump provides both the building's heating and cooling needs. The produced hot water is used to supply the residents' hot water. In addition, The Fanger model is considered and used for the assessment of occupants' thermal comfort. Matlab software is a powerful software used for this task. According to the findings, a wind turbine with a 6 kW generation capacity may supply the building's power needs while also charging the batteries beyond their initial capacity, and the building will have zero energy. Additionally, biomass fuel is used to give the building the required water which should be hot. On average, 200 g of biomass and biofuel are used per hour to maintain this temperature.

Keywords: Biofuel; Biomass; NZEB; Optimization; Transient simulation; Waste energy.

MeSH terms

  • Biomass
  • Electric Power Supplies*
  • Electricity*
  • Heating