Development, efficacy and side effects of antibody‑drug conjugates for cancer therapy (Review)

Mol Clin Oncol. 2023 May 4;18(6):47. doi: 10.3892/mco.2023.2643. eCollection 2023 Jun.

Abstract

Antibody-drug conjugates (ADCs) are anticancer drugs that combine cytotoxic small-molecule drugs (payloads) with monoclonal antibodies through a chemical linker and that transfer toxic payloads to tumor cells expressing target antigens. All ADCs are based on human IgG. In 2009, the Food and Drug Administration (FDA) approved gemtuzumab ozogamicin as the initial first-generation ADC. Since then, at least 100 ADC-related projects have been initiated, and 14 ADCs are currently being tested in clinical trials. The limited success of gemtuzumab ozogamicin has led to the development of optimization strategies for the next generation of drugs. Subsequently, experts have improved the first-generation ADCs and have developed second-generation ADCs such as ado-trastuzumab emtansine. Second-generation ADCs have higher specific antigen levels, more stable linkers and longer half-lives and show great potential to transform cancer treatment models. Since the first two generations of ADCs have served as a good foundation, the development of ADCs is accelerating, and third-generation ADCs, represented by trastuzumab deruxtecan, are ready for wide application. Third-generation ADCs are characterized by strong pharmacokinetics and high pharmaceutical activity, and their drug-to-antibody ratio mainly ranges from 2 to 4. In the past decade, the research prospects of ADCs have broadened, and an increasing number of specific antigen targets and mechanisms of cytotoxic drug release have been discovered and studied. To date, seven ADCs have been approved by the FDA for lymphoma, and three have been approved to treat breast cancer. The present review explores the function and development of ADCs and their clinical use in cancer treatment.

Keywords: ado-trastuzumab emtansine; antibody; antibody-drug conjugates; gemtuzumab ozogamicin; linker; payload; trastuzumab deruxtecan.

Publication types

  • Review

Grants and funding

Funding: This study was funded and supported by the National Natural Science Foundation of China (grant no. 82173401).