Diet effects on longevity, heat tolerance, lipid peroxidation and mitochondrial membrane potential in Daphnia

Oecologia. 2023 May;202(1):151-163. doi: 10.1007/s00442-023-05382-1. Epub 2023 May 18.

Abstract

The dietary supply of polyunsaturated fatty acids (PUFA) crucially affects animals' performance at different temperatures. However, the underlying physiological mechanisms are still insufficiently understood. Here, we analyzed lifespan and heat tolerance of four genotypes of Daphnia magna reared on either the green alga Scenedesmus obliquus that lacks long-chain (> C18) PUFA, or the heterokont alga Nannochloropsis limnetica that contains C20 PUFA, both either at saturating and near-starvation levels. A significant genotype-by-diet interaction in lifespan was observed at saturating diets. The C20 PUFA-rich diet eliminated differences in lifespan among genotypes on the PUFA-deficient diet. Corrected for body length, acute heat tolerance was higher at low than at high food concentration, at least in the older of the two age groups analyzed. Genotypes differed significantly in heat tolerance, but there were no genotype-by-diet interactions. As predicted, the C20 PUFA-rich diet resulted in higher lipid peroxidation (LPO) and a lower mitochondrial membrane potential (ΔΨm). LPO levels averaged across clones and rearing conditions were inversely related to acute heat tolerance. Yet, heat tolerance was higher on the PUFA-rich diet than on the PUFA-deficient diet, particularly in older Daphnia, indicating that the C20 PUFA-rich diet allowed Daphnia to compensate for higher LPO. In contrast, Daphnia with intermediate levels of ΔΨm showed the lowest heat tolerance. Neither LPO nor ΔΨm explained the diet effects on lifespan. We hypothesize that antioxidants present in the PUFA-rich diet may have enabled higher heat tolerance of Daphnia despite higher LPO, which may also explain the lifespan expansion of otherwise short-lived genotypes.

Keywords: Daphnia; Heat tolerance; Lifespan; Lipid peroxidation; Mitochondrial membrane potential; PUFA.

MeSH terms

  • Animals
  • Daphnia / physiology
  • Diet
  • Lipid Peroxidation
  • Longevity
  • Membrane Potential, Mitochondrial
  • Thermotolerance*