Assessing the Impact of Adlayer Description Fidelity on Theoretical Predictions of Coking on Ni(111) at Steam Reforming Conditions

J Phys Chem C Nanomater Interfaces. 2023 Apr 27;127(18):8591-8606. doi: 10.1021/acs.jpcc.3c02323. eCollection 2023 May 11.

Abstract

Methane steam reforming is an important industrial process for hydrogen production, employing Ni as a low-cost, highly active catalyst, which, however, suffers from coking due to methane cracking. Coking is the accumulation of a stable poison over time, occurring at high temperatures; thus, to a first approximation, it can be treated as a thermodynamic problem. In this work, we developed an Ab initio kinetic Monte Carlo (KMC) model for methane cracking on Ni(111) at steam reforming conditions. The model captures C-H activation kinetics in detail, while graphene sheet formation is described at the level of thermodynamics, to obtain insights into the "terminal (poisoned) state" of graphene/coke within reasonable computational times. We used cluster expansions (CEs) of progressively higher fidelity to systematically assess the influence of effective cluster interactions between adsorbed or covalently bonded C and CH species on the "terminal state" morphology. Moreover, we compared the predictions of KMC models incorporating these CEs into mean-field microkinetic models in a consistent manner. The models show that the "terminal state" changes significantly with the level of fidelity of the CEs. Furthermore, high-fidelity simulations predict C-CH island/rings that are largely disconnected at low temperatures but completely encapsulate the Ni(111) surface at high temperatures.