Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata

Environ Sci Pollut Res Int. 2023 Jun;30(29):73870-73880. doi: 10.1007/s11356-023-27483-3. Epub 2023 May 17.

Abstract

The goal of the current study was to synthesize zinc oxide nanoparticles (ZnO-NPs) using ZnCl2.2H2O salt precursor and an aqueous extract of Nephrolepis exaltata (N. exaltata), which act as a capping and reducing agent. N. exaltata plant extract-mediated ZnO-NPs were further characterized by various techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-visible (UV-Vis), and energy-dispersive X-ray (EDX) analysis. The nanoscale crystalline phase of ZnO-NPs was analyzed by the XRD patterns. The FT-IR analysis revealed different functional groups of biomolecules involved in the reduction and stabilization of the ZnO-NPs. The light absorption and optical properties of ZnO-NPs were examined by UV-Vis spectroscopy at a wavelength of 380 nm. The spherical shape morphology of ZnO-NPs with mean particle size ranges between 60 and 80 nm was confirmed by SEM images. While the EDX analysis was used to identify the elemental composition of ZnO-NPs. Furthermore, the synthesized ZnO-NPs demonstrate potential antiplatelet activity by inhibiting the platelet aggregation induced by platelet activation factor (PAF) and arachidonic acid (AA). The results showed that synthesized ZnO-NPs were more effective in inhibiting platelet aggregation induced by AA with IC50 (56% and 10 μg/mL) and PAF (63% and 10 μg/mL), respectively. However, the biocompatibility of ZnO-NPs was assessed in human lung cancer cell line (A549) under in vitro conditions. The cytotoxicity of synthesized nanoparticles revealed that cell viability decreased and the IC50 was found to be 46.7% at a concentration of 75 μg/mL. The present work concluded the green synthesis of ZnO-NPs that was achieved by N. exaltata plant extract and showed good antiplatelet and cytotoxic activity, which demonstrates the lack of harmful effects making them more effective for use in pharmaceutical and medical fields to treat thrombotic disorders.

Keywords: Antiplatelet; Characterization; Cytotoxic activities; Green synthesis; Nephrolepis exaltata; ZnO-NPs.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Antineoplastic Agents* / pharmacology
  • Humans
  • Metal Nanoparticles* / chemistry
  • Microbial Sensitivity Tests
  • Nanoparticles* / chemistry
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Spectroscopy, Fourier Transform Infrared
  • Tracheophyta* / metabolism
  • X-Ray Diffraction
  • Zinc Oxide* / chemistry

Substances

  • Zinc Oxide
  • Anti-Bacterial Agents
  • Plant Extracts
  • Antineoplastic Agents