Theoretical study on the influence of different solvents on the growth morphology of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF)

J Mol Model. 2023 May 17;29(6):179. doi: 10.1007/s00894-023-05590-9.

Abstract

Context: 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a new energetic compound with high energy and high density, and it is an important component of propellant and melt cast explosive. In order to study the effect of solvent on the growth morphology of DNTF, the growth plane of DNTF in vacuum is predicted by attachment energy (AE) model, and then the modified attachment energy of each growth plane in different solvents is calculated by molecular dynamics simulation. The morphology of crystal in solvent is predicted by modified attachment energy (MAE) model. The factors affecting crystal growth in solvent environment are analyzed by mass density distribution, radial distribution function and diffusion coefficient. The results show that the growth morphology of crystal in solvent is not only related to the adsorption strength of solvent to crystal plane, but affected by the attraction of crystal plane to solute. The hydrogen bond plays an important role in the adsorption strength between solvent and crystal plane. The polarity of solvent has a great influence on the crystal morphology, and the interaction between the solvent with stronger polarity and the crystal plane is stronger. The morphology of DNTF in n-butanol solvent is closer to spherical, which can effectively reduce the sensitivity of DNTF.

Methods: The molecular dynamics simulation is carried out under the COMPASS force field of Materials Studio software. Gaussian software is used to calculate the electrostatic potential of DNTF at B3LYP-D3/6-311 + G (d, p) theoretical level.

Keywords: Crystal morphologies; DNTF; Modified attachment energy models; Molecular dynamics simulation; Solvents.