Pathology-supported genetic testing presents opportunities for improved disability outcomes in multiple sclerosis

Per Med. 2023 Mar;20(2):107-130. doi: 10.2217/pme-2022-0016. Epub 2023 May 17.

Abstract

Background: Lipid metabolism may impact disability in people with multiple sclerosis (pwMS). Methods: Fifty-one pwMS entered an ultrasound and MRI study, of whom 19 had followed a pathology-supported genetic testing program for more than 10 years (pwMS-ON). Genetic variation, blood biochemistry, vascular blood flow velocities, diet and exercise were investigated. Results: pwMS-ON had significantly lower (p < 0.01) disability (Expanded Disability Status Scale) than pwMS not on the program (1.91 ± 0.75 vs 3.87 ± 2.32). A genetic variant in the lipid transporter FABP2 gene (rs1799883; 2445G>A, A54T) was significantly associated (p < 0.01) with disability in pwMS not on the program, but not in pwMS-ON (p = 0.88). Vascular blood flow velocities were lower in the presence of the A-allele. Conclusion: Pathology-supported genetic testing may provide guidance for lifestyle interventions with a significant impact on improved disability in pwMS.

Keywords: EDSS; FABP2 genetic variant; disability; multiple sclerosis; pathology-supported genetic testing; personalized medicine; unsaturated fatty acids; vascular ultrasound.

Plain language summary

This study investigated the role of a genetic variant that increases saturated fat absorption and may make people with multiple sclerosis (MS) more susceptible to disability progression. Of 51 people with MS, 19 had followed a program which includes normalization of blood test results and daily intake of unsaturated fatty acids for more than 10 years, while the others had not. The latter group had significantly greater disability than the people who had followed the program, suggesting that the unsaturated fatty acids modulated the effect of the genetic variant. Six MS cases are presented as examples, including a marathon athlete (Case 1) and a patient who showed a dramatic decrease in disability from being wheelchair-bound for 15 years to walking freely (Case 2).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genetic Testing
  • Humans
  • Life Style
  • Multiple Sclerosis* / genetics