Isotopic evidence of environmental changes during the Devonian-Carboniferous transition in South China and its implications for the biotic crisis

Geobiology. 2023 Sep;21(5):592-611. doi: 10.1111/gbi.12559. Epub 2023 May 17.

Abstract

The Devonian-Carboniferous (D-C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D-C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15 N excursion (~-3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13 Ccarb and δ13 Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13 C-depleted anoxic water masses. Decreased δ34 S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13 Corg values associated with maximal △13 C. The integrated δ15 N-δ13 C-δ34 S data suggest that significant ocean-redox variation was recorded in South China during the D-C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.

Keywords: D-C boundary; Hangenberg Event; anoxia; chemostratigraphy; upwelling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon*
  • Carbonates / analysis
  • China
  • Facies
  • Geologic Sediments*
  • Humans
  • Hypoxia
  • Water

Substances

  • Carbon
  • Carbonates
  • Water