Maresin1: A multifunctional regulator in inflammatory bone diseases

Int Immunopharmacol. 2023 Jul:120:110308. doi: 10.1016/j.intimp.2023.110308. Epub 2023 May 14.

Abstract

Inflammation plays a crucial role in the physical response to danger signals, the elimination of toxic stimuli, and the restoration of homeostasis. However, dysregulated inflammatory responses lead to tissue damage, and chronic inflammation can disrupt osteogenic-osteoclastic homeostasis, ultimately leading to bone loss. Maresin1 (MaR1), a member of the specialized pro-resolving mediators (SPMs) family, has been found to possess significant anti-inflammatory, anti-allergic, pro-hemolytic, pro-healing, and pain-relieving properties. MaR1 is synthesized by macrophages (Mφs) and omega-3 fatty acids, and it may have the potential to promote bone homeostasis and treat inflammatory bone diseases. MaR1 has been found to stimulate osteoblast proliferation through leucine-rich repeat G protein-coupled receptor 6 (LGR6). It also activates Mφ phagocytosis and M2-type polarization, which helps to control the immune system. MaR1 can regulate T cells to exert anti-inflammatory effects and inhibit neutrophil infiltration and recruitment. In addition, MaR1 is involved in antioxidant signaling, including nuclear factor erythroid 2-related factor 2 (NRF2). It has also been found to promote the autophagic behavior of periodontal ligament stem cells, stimulate Mφs against pathogenic bacteria, and regulate tissue regeneration and repair. In summary, this review provides new information and a comprehensive overview of the critical roles of MaR1 in inflammatory bone diseases, indicating its potential as a therapeutic approach for managing skeletal metabolism and inflammatory bone diseases.

Keywords: Bone; Inflammation; Maresin1; Omega-3 fatty acid; Specialized pro-resolving mediators.

Publication types

  • Review

MeSH terms

  • Anti-Inflammatory Agents / pharmacology
  • Bone Diseases* / drug therapy
  • Docosahexaenoic Acids / metabolism
  • Docosahexaenoic Acids / pharmacology
  • Docosahexaenoic Acids / therapeutic use
  • Humans
  • Inflammation* / drug therapy
  • Macrophages
  • Phagocytosis

Substances

  • Anti-Inflammatory Agents
  • Docosahexaenoic Acids