Heterogeneous integration of a III-V quantum dot laser on high thermal conductivity silicon carbide

Opt Lett. 2023 May 15;48(10):2539-2542. doi: 10.1364/OL.486089.

Abstract

Heat accumulation prevents semiconductor lasers from operating at their full potential. This can be addressed through heterogeneous integration of a III-V laser stack onto non-native substrate materials with high thermal conductivity. Here, we demonstrate III-V quantum dot lasers heterogeneously integrated on silicon carbide (SiC) substrates with high temperature stability. A large T0 of 221 K with a relatively temperature-insensitive operation occurs near room temperature, while lasing is sustained up to 105°C. The SiC platform presents a unique and ideal candidate for realizing monolithic integration of optoelectronics, quantum, and nonlinear photonics.