The potential target of bithionol against Staphylococcus aureus: design, synthesis and application of biotinylated probes Bio-A2

J Antibiot (Tokyo). 2023 Jul;76(7):406-415. doi: 10.1038/s41429-023-00618-x. Epub 2023 Apr 25.

Abstract

This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 μM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Biofilms
  • Bithionol
  • Chromatography, Liquid
  • Humans
  • Methicillin-Resistant Staphylococcus aureus*
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Staphylococcal Infections* / microbiology
  • Staphylococcus aureus / genetics
  • Tandem Mass Spectrometry

Substances

  • Bithionol
  • Anti-Bacterial Agents