Dehydration study of apple slices by a non-thermal process

Environ Sci Pollut Res Int. 2023 May 15. doi: 10.1007/s11356-023-27517-w. Online ahead of print.

Abstract

This study investigated the impacts of a drying process under low temperature and reduced pressure (non-thermal drying) on the final dehydrated products characteristics. This process is based on the retention of water on molecular sieves with a good selectivity against these molecules. In this study, drying experiments of 7mm thick apple slices (AS) were performed and compared to apple slices pretreated by freezing. It was concluded that the dehydrated apple slices were depleted of the maximum amount of water after 12 hours of drying, with a final water content equal to 12 ± 1.75%, whereas after freezing pretreatment, a decrease in drying time to 7 hours was observed, as well as a decrease in water content to 10 ± 0.5%. This explains the effect of freezing pretreatment on accelerating water transfer. In addition, a convective drying was performed on the apple slices at 60°C, which allows comparison with the slices dried by our non-thermal drying process. In order to characterize the obtained fruits, characteristic analyses such as water activity (Aw), color, texture (hardness), and dimensions (diameter and thickness) were performed before and after each drying experiment. Thus, continuous measurements of temperature, humidity, and pressure, within the enclosure, were determined during the experiments using a wireless sensor system controlled by a programming Arduino. Finally, mathematical modeling by various models (Newton, Page, Midilli, etc.) was performed to determine the most suitable model describing the non-thermal and convective drying of apple slices.

Keywords: Apple slices; Characterization; Convective drying; Freezing; Hardness; Moisture content; Non-thermal drying; Water activity; Water content; Water lost.