Tyrosinase inhibitory activity of Sargassum fusiforme and characterisation of bioactive compounds

Phytochem Anal. 2023 May 14. doi: 10.1002/pca.3233. Online ahead of print.

Abstract

Introduction: Sargassum fusiforme (Harvey) Setchell, also known as Tot (in Korean) and Hijiki (in Japanese), is widely consumed in Korea, Japan, and China due to its health promoting properties. However, the bioactive component behind the biological activity is still unknown.

Objectives: We aimed to optimise the extraction conditions for achieving maximum tyrosinase inhibition activity by using two sophisticated statistical tools, that is, response surface methodology (RSM) and artificial neural network (ANN). Moreover, high-resolution mass spectrometry (HRMS) was used to tentatively identify the components, which are then further studied for molecular docking study using 2Y9X protein.

Methodology: RSM central composite design was used to conduct extraction using microwave equipment, which was then compared to ANN. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was used to tentatively identify bioactive components, which were then docked to the 2Y9X protein using AutoDock Vina and MolDock software.

Results: Maximum tyrosinase inhibition activity of 79.530% was achieved under optimised conditions of time: 3.27 min, temperature: 128.885°C, ethanol concentration: 42.13%, and microwave intensity: 577.84 W. Furthermore, 48 bioactive compounds were tentatively identified in optimised Sargassum fusiforme (OSF) extract, and among them, seven phenolics, five flavonoids, five lignans, six terpenes, and five sulfolipids and phospholipids were putatively reported for the first time in Sargassum fusiforme. Among 48 bioactive components, trifuhalol-A, diphlorethohydroxycarmalol, glycyrrhizin, and arctigenin exhibited higher binding energies for 2Y9X.

Conclusion: Taken together, these findings suggest that OSF extract can be used as an effective skin-whitening source on a commercial level and could be used in topical formulations by replacing conventional drugs.

Keywords: Sargassum fusiforme; artificial neural network; optimisation; response surface methodology; tyrosinase.