[Spatial-temporal Variation in Net Primary Productivity in Terrestrial Vegetation Ecosystems and Its Driving Forces in Southwest China]

Huan Jing Ke Xue. 2023 May 8;44(5):2704-2714. doi: 10.13227/j.hjkx.202207068.
[Article in Chinese]

Abstract

Studying the spatial-temporal variation in net primary productivity (NPP) in terrestrial vegetation ecosystems and its driving forces in southwest China is of great importance for regional eco-environmental protection. The spatial and temporal changes in net primary productivity (NPP) in terrestrial vegetation ecosystems and its responding characteristics to climate change and human activities were explored in this study on the basis of the Moderate Resolution Imaging Spectroradiometer (MODIS) NPP from 2000 to 2021, in situ meteorological data from 1999 to 2021, and land use type datasets from 2000 to 2020 using principal component analysis, residual analysis, Theil-Sen Median analysis, and partial correlation analysis. The results showed that on a temporal scale, the vegetation NPP showed a fluctuating upward trend, with a rate of 3.54 g·(m2·a)-1in southwest China from 2000 to 2021. Meanwhile, under the influence of climate change and human activities, NPP of farmland, grassland, and forests all showed an upward trend, but the magnitude of the increasing trends of farmland NPP was the most significant. On the spatial scale, the areas with an upward trend in vegetation NPP accounted for 89.06% in southwest China, and the areas with significant and extremely significant increases were mainly distributed in southern Guangxi, eastern Sichuan, western Chongqing, and the junction areas of Yunnan and Guizhou. Climate change and human activities had dual effects on vegetation growth in southwest China, and the proportions of the areas with upward trends in farmland NPP were higher than that of grassland and forests both under the influences of climate change and human activities. The correlations between vegetation NPP and climate factors showed obvious regional differences in southwest China. On the regional scale, the areas with a positive correlation between vegetation NPP and temperature, precipitation, and sunshine duration were greater than that of the areas with a negative correlation. However, an opposite relationship could be found between vegetation NPP and biological aridity/humidity index. Among them, the areas with a positive correlation between vegetation NPP and temperature were greater than that with other climate factors. In terms of different vegetation ecosystems, temperature, precipitation, and sunshine duration had a stronger role in promoting NPP variation in the grassland ecosystem than in farmland and forest ecosystems. The transformation of other land use types to forest land had contributed to vegetation improvement in southwest China.

Keywords: climate change; human activities; net primary productivity(NPP); principal component analysis; residual analysis; southwest China.

Publication types

  • English Abstract

MeSH terms

  • China
  • Climate Change
  • Ecosystem*
  • Forests
  • Humans
  • Models, Theoretical*
  • Temperature